Civil Engineering

Charles A. Dana Professor Michael Puddicombe; Professors Thomas Descoteaux and Edwin Schmeckpeper (Chair); Associate Professors Michael Kelley, Tara Kulkarni, Jack Patterson, Adam Sevi, and Moses Tefe; Assistant Professor Nadia Al-Aubaidy.

Civil Engineering, the oldest branch of the engineering profession, utilizes knowledge of mathematics and science, while applying judgment, to design economic means for improving the well-being of humanity; by providing designs for community living, industry, and transportation; and by designing structures for the use of humankind. One of the rare historical records of civil engineering within academia is contained in the first catalogue of this university, dated August 1821. Among the description of offerings to students in 1820 was... “Civil Engineering, including the construction of roads, canals, locks and bridges.” This institution was thus the first private school in the United States where students were taught engineering as a separate branch of education. Two of its earliest alumni, Alfred W. Craven and Moncure Robinson, were prominent in the formation of the American Society of Civil Engineers in 1852.

The Civil & Environmental Engineering field encompasses planning, design, construction, and maintenance of structures, which often includes altering the natural geography to meet human needs. Civil Engineers plan, design, construct, and maintain suspension bridges, dams, tunnels, skyscrapers, the Interstate highway system, airports, ports, shopping centers, residential developments, water delivery and purification facilities, and irrigation systems. During their first two years, students learn the fundamental mathematical and scientific principles essential for engineering analysis and design. Principles of the design process are introduced in the first engineering courses and continually emphasized and practiced in the subsequent engineering courses. The last two years of the curriculum are devoted to providing a sound grounding in five major civil engineering sub-disciplines: water resources, structural, environmental, geotechnical, and construction. The design experience is culminated in the senior year with a major design project. Because laboratory experience is deemed essential to learning, participatory laboratories reinforce principles learned in lectures and permit students to learn through inquiry. To this end, laboratory sections are kept small and require student participation. Use of the computer for both analysis and design is an integral part of the curriculum and the department maintains a computer laboratory for the exclusive use of civil engineering students. Software required for all courses and additional software for student inquiry is available. The curriculum is also strengthened by activities of the Norwich student chapters of the American Society of Civil Engineers, Chi Epsilon, Tau Beta Pi, and the Society of American Military Engineers.

Mission:
The mission of the Civil Engineering Program is:

• Prepare students to excel in civil engineering and related fields.
• Make clear to students that above all else, the Civil Engineering profession is committed to bettering the world.
• Provide fundamental, laboratory-oriented (BSCE level only), hands-on education in the civil engineering field.
• Foster creativity, critical thinking, and problem-solving abilities and motivate students to consider the environmental consequences of their work.
• Enable students to be leaders in their profession, community, nation, and the world.

Goals:
Graduates of the Civil Engineering Program will:

• Lead project teams in their chosen field of Civil Engineering research, design, construction, or management, progressively rising to positions of technical leadership
• Be respected and recognized for technical competence in the creation of solutions that balance sustainability, societal and economic issues.
• Become active citizens in their profession, community, the nation and the world.
• Communicate to both technical and non-technical audiences.
• Actively engage in continuing education throughout life.

Outcomes:
Students in the Civil Engineering Program will demonstrate and ability to:

• Apply scientific and fundamental engineering knowledge based upon a strong foundation in advanced mathematics, chemistry, physics, and the engineering sciences.
• Design and conduct hands-on experiments, use appropriate laboratory equipment to develop, analyze and interpret data.
• Design a component system or process in the civil engineering field that meets performance, quality, cost, time, safety, environmental, and sustainable requirements.
• Function as a member of a multidisciplinary team and be able to assume leadership roles on the team.
• Determine into which technical area of civil engineering a project belongs and be able to analyze a project within at least four technical areas.
• Recognize and achieve a high level of professional and ethical conduct in all aspects of engineering work and can analyze a professional dilemma.
• Formulate and deliver effective written and verbal communications of laboratory, analytical and design project work to a variety of audiences.
• Understand and incorporate non-technical considerations into an engineering solution including safety, environmental, social, economic, and global issues.
• Recognize the need for civil engineers to engage in lifelong learning and begin the process by taking the FE examination.
• Be knowledgeable of contemporary issues in civil engineering.
• Utilize techniques, skills and modern engineering tools necessary for civil engineering practice.
• With the knowledge that engineering changes society, civil engineers must understand that they are leaders.

Careers for this Major:
Graduate from this program manage varying job demands and requirements and are capable of adapting to rapidly changing technology. Graduates are also prepared for further formal study in graduate school where a student can specialize in a civil engineering sub-discipline. Whether working for a private engineering firm, construction firm, government agency, or industry, there are many areas in which civil engineers can focus. A few of the major specialties include:
• Structural (buildings, bridges, tunnels)
• Geotechnical (retaining structures, foundations)
• Water and wastewater (water supply, sewage disposal)
• Hydrology (river control, drainage)
• Transportation (highways, airports, railroads)
• Environmental (hazardous waste, air pollution, water quality)

The American Society of Civil Engineers is the largest professional organization that serves Civil and Environmental Engineers, as well as many other types of engineers in associated fields. To learn more about employment opportunities in Civil and Environmental Engineering, please visit: http://careers.asce.org.

Accreditation:

Major
B.S. in Civil Engineering - Curriculum Map 2018-2019 Catalog
Print PDF Curriculum Map (http://catalog.norwich.edu/residentialprogramscatalog/collegeofprofessionalschools/thedavidcrawfordschoolofengineering/civil/civil_1532371660787.pdf)
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 336 Introduction to Transportation Engineering</td>
<td>3</td>
<td>CE 332 Engineering Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CE 421 Environmental Engineering</td>
<td>4</td>
<td>CE 348 Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EG 301 Mechanics of Materials</td>
<td>3</td>
<td>CE 422 Waste and Water Treatment</td>
<td>3</td>
</tr>
<tr>
<td>EG 303 Fluid Mechanics</td>
<td>3</td>
<td>EN 204 Professional and Technical Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Fall Semester Total Cr.: 17

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 419 Foundation Engineering</td>
<td>3</td>
<td>CE 444 Reinforced Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>CE 442 Design of Steel Structures</td>
<td>3</td>
<td>CE 480 Senior Design (Capstone)</td>
<td>3</td>
</tr>
<tr>
<td>CE 460 Construction Management</td>
<td>3</td>
<td>General Education History/Literature/Arts & Humanities/Social Science (http://catalog.norwich.edu/residentialprogr...</td>
<td>3</td>
</tr>
<tr>
<td>CE 475 Senior Project Planning</td>
<td>1</td>
<td>General Education History/Literature/Arts & Humanities/Social Science (http://catalog.norwich.edu/residentialprogr...</td>
<td>3</td>
</tr>
<tr>
<td>EE 315 Electrical Energy Systems</td>
<td>3</td>
<td>Science Elective *</td>
<td>4</td>
</tr>
<tr>
<td>EG 044 Conference</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG 450 Professional Issues (General Education Ethics)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall Semester Total Cr.: 16

TOTAL CREDITS FOR THIS MAJOR: 133-135

An undergraduate student, who has completed all degree requirements except for attaining a 2.00 average, must take at least 50 percent of all subsequent course work in technical material (subject to approval by the School Director).

All Civil Engineering majors are required to take the Fundamentals of Engineering (F.E.) exam, administered by the State of Vermont or other state, to receive the BSCE degree.

*Science Electives: BI 101, BI 102, BI 220, BI 205, CH 204, CH 205, CH 327, ES 270, GL 110, GL 111, GL 156, GL 253, GL 255, GL 257, GL 262, GL 265, ID 110, PS 212. Must include at least one science course that is in an area other than chemistry or physics.